Конспект урока физика элементарных частиц. Конспект урока физики на тему "Мир элементарных частиц" (11 класс). Прогнозируемая деятельность ученика

Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физика элементарных частиц и ядерная физика являются близкими, но самостоятельными разделами физики, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц – это исследование природы, свойств и взаимных превращений элементарных частиц.
Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, т. е. неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель, 1896 г.), а также открытиями электронов (Дж. Томсон, 1897 г.) и α-частиц (Э. Резерфорд, 1899 г.). В 1905 году в физике возникло представление о квантах электромагнитного поля – фотонах (А. Эйнштейн).
В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж. Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д. Д. Иваненко и В. Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон – положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными «кирпичиками» природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (μ-мезонами). Затем в 1947–1950 годах были открыты пионы (т. е. π-мезоны), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций.
В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы «живут» гораздо меньшее время. Например, среднее время жизни μ-мезона равно 2,2·10–6 с, нейтрального π-мезона – 0,87·10–16 с. Многие массивные частицы – гипероны имеют среднее время жизни порядка 10–10 с.
Существует несколько десятков частиц со временем жизни, превосходящим 10–17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10–22–10–23 с.
Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (т. е. исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы.
Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда. Возможно существование атомов антивещества, ядра которых состоят из антинуклонов, а оболочка – из позитронов. При аннигиляции антивещества с веществом энергия покоя превращается в энергию квантов излучения. Это огромная энергия, значительно превосходящая ту, которая выделяется при ядерных и термоядерных реакциях.
В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. В табл. 9.9.1 представлены некоторые сведенья о свойствах элементарных частиц со временем жизни более 10–20 с. Из многих свойств, характеризующих элементарную частицу, в таблице указаны только масса частицы (в электронных массах), электрический заряд (в единицах элементарного заряда) и момент импульса (так называемый спин) в единицах постоянной Планка ħ = h / 2π. В таблице указано также среднее время жизни частицы.
Группа
Название частицы
Символ
Масса (в электронных массах)
Электрический заряд
Спин
Время жизни (с)
Частица
Античастица
Фотоны
Фотон
γ

Стабилен
Лептоны
Нейтрино электронное
νe

1 / 2
Стабильно
Нейтрино мюонное
νμ

1 / 2
Стабильно
Электрон
e–
e+

–1 1
1 / 2
Стабильн
Мю-мезон
μ–
μ+
206,8
–1 1
1 / 2
2,2∙10–6
Адроны
Мезоны
Пи-мезоны
π0
264,1

0,87∙10–16
π+
π–
273,1
1 –1

2,6∙10–8
К-мезоны
K +
K –
966,4
1 –1

1,24∙10–8
K 0

≈ 10–10–10–8
Эта-нуль-мезон
η0

≈ 10–18
Барионы
Протон
p

1836,1
1 –1
1 / 2
Стабилен
Нейтрон
n

Лямбда-гиперон
Λ0

1 / 2
2,63∙10–10
Сигма-гипероны
Σ +

2327,6
1 –1
1 / 2
0,8∙10–10
Σ 0

1 / 2
7,4∙10–20
Σ –

2343,1
–1 1
1 / 2
1,48∙10–10
Кси-гипероны
Ξ 0

1 / 2
2,9∙10–10
Ξ –

2585,6
–1 1
1 / 2
1,64∙10–10
Омега-минус-гиперон
Ω–

–1 1
1 / 2
0,82∙10–11

Таблица 9.9.1.
Элементарные частицы объединяются в три группы: фотоны, лептоны и адроны.
К группе фотонов относится единственная частица – фотон, которая является носителем электромагнитного взаимодействия.
Следующая группа состоит из легких частиц лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и μ-мезон. К лептонам относятся еще ряд частиц, не указанных в таблице. Все лептоны имеют спин
Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две подгруппы. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них – положительно и отрицательно заряженные, а также нейтральные π-мезоны с массами порядка 250 электронных масс (табл. 9.9.1). Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один η0-мезон. Все мезоны имеют спин, равный нулю.
Вторая подгруппа – барионы – включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны – протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г. Это тяжелая частица с массой в 3273 электронных масс. Все барионы имеют спин
Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион – из трех антикварков. Мезоны состоят из пар кварк–антикварк.
С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными и элементарного заряда.
Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц – адронов.
Фундаментальные взаимодействия. Процессы, в которых участвуют различные элементарные частицы, сильно различаются по характерным временам их протекания и энергиям. Согласно современным представлениям, в природе осуществляется четыре типа взаимодействий, которые не могут быть сведены к другим, более простым видам взаимодействий: сильное, электромагнитное, слабое и гравитационное. Эти типы взаимодействий называют фундаментальными.
Сильное (или ядерное) взаимодействие – это наиболее интенсивное из всех видов взаимодействий. Они обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы – адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка и менее 10–15 м. Поэтому его называют короткодействующим.
Электромагнитное взаимодействие. В этом виде взаимодействия могут принимать участие любые электрически заряженные частицы, а так же фотоны – кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.
Слабое взаимодействие – наиболее медленное из всех взаимодействий, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, β-распад нейтрона

А также безнейтринные процессы распада частиц с большим временем жизни (τ ≥ 10–10 с).
Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезды, планеты и т. п.) с их огромными массами.
В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута нашими соотечественниками И. Е. Таммом и Д. Д. Иваненко. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках.
Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия. Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами – квантами электромагнитного поля.
Теория обменного взаимодействия получила признание после того, как в 1935 г. японский физик Х. Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название π-мезонов (пионов). В настоящее время известны три вида пионов: π+, π– и π0 (см. табл. 9.9.1).
В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых векторных бозонов W+, W– и Z0, обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие. Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом электромагнитного поля участвуют векторные бозоны.
После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействия тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой.
Физики-теоретики прилагают значительные усилия в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения. Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик – гипотетическая частица, названная гравитоном. Однако эта частица до сих пор не обнаружена.
В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология – наука об эволюции Вселенной – предполагает, что Большой взрыв произошел 18 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤ 1019 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014 ГэВ). При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи – нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

Молянова Надежда Михайловна ID 011

Тема: Зарождение физики элементарных частиц. Классификация элементарных частиц.

Основное содержание учебного материала:
- Исторические этапы развития элементарных частиц.
- Понятие об элементарных частицах и их классификация, взаимные превращения.
- Типы взаимодействий элементарных частиц.
- Элементарные частицы в нашей жизни.

Тип урока: обобщение и систематизация.

Форма урока: Лекция с элементами беседы и самостоятельной работы учащихся с учебником и таблицами.(Таблицы лежат на столах у учащихся и проецируются на экран в процессе урока)

Цель урока:
- Расширить представление учащихся о строении вещества, дать классификацию элементарных частиц, их общие свойства, ознакомить с основными этапами развития.
- Развивать научное мышление учащихся на основе представлений об элементарных частицах и их взаимодействиях

Ход урока:
1. Организационный момент (1 мин.)
2. Изучение нового материала (30 мин.)
3. Закрепление изученных знаний (6 мин.)
4. Подведение итогов (2 мин.)
5. Д/З (1 мин.)

1. Сегодня на уроке мы будем говорить о первичных, неразложимых далее частицах, из которых состоит вся материя. Вы уже более или менее знакомы с электроном, фотоном, протоном и нейтроном. Но что же такое элементарная частица?

2. Исторические этапы развития элементарных частиц можно представить в виде таблицы.

В начале xx века было установлено, что все атомы построены из нейтронов, протонов и электронов. Были открыты позитроны, нейтрино, фотон (гамма - квант).
Основные характеристики наиболее часто встречающихся элементарных частиц.

Элементарные частицы, в точном смысле этого слова – это первичные неразложимые далее частицы, из которых состоят все вещества.
В настоящее время этот термин применяется для большой группы микрочастиц, которые НЕ являются атомами или ядрами, за исключением протона являющегося и элементарной частицей и ядром легкого атома водорода.
Элементарные частицы характеризуются параметрами: "масса покоя частицы, величина спина, величина электрического заряда, время жизни."
Спин элементарной частицы равен отношению постоянной Планка к 2 п

Частицы, имеющие спин и т.д., называют бозонами ; с полуцелым спином - фермионами , т.е.все элементарные частицы разделяются на частицы и античастицы. Они имеют одинаковые массы, спины, времена жизни и равные по модулю электрические заряды.

Позитрон обнаружен в камере Вильсона в 1928 г. Эта частица – электрон, но с положительным зарядом Позитрон был обнаружен в космических лучах. Позже при взаимодействии гамма- квантов с веществом и в реакции превращения протона в нейтрон.

Процесс взаимодействия элементарной частицы с античастицей, в результате чего они превращаются в другие частицы или кванты электромагнитного поля, называют аннигиляцией (исчезновение). Реакция аннигиляции:

Процесс, обратный аннигиляции, называется рождением пары .

Вопрос: Подумайте, какое строение будет иметь антидейтерий?
Ответ: состоит из электрона и ядра(протон и нейтрон). Атом антидейтерия будет состоять из антиядра (антипротона и антинейтрона) и одного позитрона, движущегося вокруг антиядра.

Элементарные частицы участвуют в четырёх известных фундаментальных видах взаимодействия: сильном, электромагнитном, слабом и гравитационном. (см. таб.3)


Энергии фундаментальных взаимодействий относятся примерно так:

Рассмотрим табл.4
Вопрос: Назовите основные классы элементарных частиц.

Ответ: фотоны, лептоны, мезоны, барионы.

Вопрос: Назовите основные характеристики элементарных частиц.
Ответ: Масса, заряд, спин, время жизни.

Вопрос: Чем отличаются частицы и античастицы?
Ответ: Знаки электрических зарядов у частицы и античастицы противоположны.

Фотоны – частицы, участвующие в электромагнитных и гравитационных взаимодействиях.
Лептоны – частицы, не участвующие в сильных взаимодействиях, но способные к трём остальным.
Адроны – частицы, участвующие во всех видах фундаментальных взаимодействий. В этот класс объединяются барионы и мезоны . Барионы имеют полуцелые спины, а мезоны – целочисленные спины. Принадлежность к барионам отмечается присвоением барионного заряда – числа равного +1 для частицы, и -1 для античастицы. К адронам относятся только часть мезонов (П -мезон). Нуклоны относятся к барионам. Барионы, масса которых больше массы нуклона, называют гиперонами .
Принадлежность к лептонам отмечается присвоением каждой частице лептонного заряда: для частиц +1, для античастиц -1.
Установлено, что адроны состоят из кварков – шести частиц, имеющих дробный элементарный электрический заряд. Кварки не наблюдались в свободном состоянии, только в самом центре нуклона находятся как самостоятельные частицы.
Для того, чтобы проникнуть глубже в микромир, необходимо использовать частицы всё больших энергий.
Оказывается, при огромной энергии, существующей при температуре слабое и электромагнитное взаимодействия объединяются в электрослабое. При объединяются все четыре взаимодействия, при этом становятся возможными превращения частиц физической материи (фермионов) в частицы – переносчики взаимодействия (бозоны).
Почему так необходима информация об элементарных частицах?
Важнейшим для физики элементарных частиц является вывод о связи между массой и энергией. Энергия тела или системы тем равна массе, умноженной на квадрат скорости.
Есть над чем подумать!
Нейтрино – частица, которая появилась в момент рождения Вселенной и носит много информации, поэтому нейтринные телескопы «ловят»частицы и ученные изучают их. Существует прибор позитронный томограф. В кровь живого организма вводят радиоактивный элемент, излучающий позитроны, которые вступают в реакцию с электронами организма, аннигилируют, излучают гамма-лучи, которые фиксируются детектором.
В малых дозах гамма-кванты оказывают на живые организмы определенную пользу. Область применения – медицина, наука, техника.

3. Используя опорные конспекты, учебник, таблицы, дайте ответы на вопросы.

4. Все элементарные частицы превращаются друг в друга, т.е. эти взаимные превращения являются главным фактором их существования. Среди свойств элементарных частиц можно выделить следующие: нестабильность, взаимопревращаемость и взаимодействие, наличие у каждой частицы античастицы, сложная структура, классификация.

Мир состоит из фундаментальных частиц. Любое материальное тело обладает массой. А что такое масса? БАК ускоритель частиц, благодаря которому физики могут проникнуть так глубоко внутрь материи, как никогда раньше.
Создание БАКа знаменует начало будущих перспективных исследований. Исследователи надеются на новые физические явления, такие как неуловимые частицы Хиггса, или те, что образуют тёмную материю, составляющую большую часть вещества во Вселенной. Невозможно точно предсказать результаты предстоящих экспериментов, но они точно окажут большое влияние и не только на физику элементарных частиц! Но создание БАКа не заканчивает страницу в истории физики, а скорее знаменует начало будущих перспективных исследований.

5. Домашнее задание (на доске)
Параграфы 115, 116; опорный конспект
подготовить сообщение о ходе исследовательских работ на БАКе.

Используемая литература:
Физика 11 Г.Я. Мякишев, Б.Б. Буховцев. Дрофа.
Курс физики. 3 том. К.А.Путилов, В.А.Фабрикант.
Атомная и ядерная физика. О.К. Костко.
Поурочные разработки по физике. 11класс. В.А.Волков.
Uroki. Net

Класс: 11

Класс : 11

Тип урока: урок изучения и первичного закрепления новых знаний

Метод обучения: лекция

Форма деятельности учащихся: фронтальная, коллективная, индивидуальная

Цель урока: расширить представление учащихся о строении вещества; рассмотреть основные этапы развития физики элементарных частиц; дать понятие об элементарных частицах и их свойствах.

Задачи урока:

  • Образовательная : познакомить учащихся с понятием - элементарная частица, с типологией элементарных частиц, а так же с методами исследования свойств элементарных частиц;
  • Развивающая : развивать познавательный интерес учащихся, обеспечивая посильное вовлечение их в активную познавательную деятельность;
  • Воспитательная : воспитание общечеловеческих качеств - осознанности восприятия научных достижений в мире; развития любознательности, выдержки.

Оборудование к уроку:

Дидактические материалы: материал учебника, карточки с тестами и с таблицами

Наглядные пособия: презентация

1. Организация начала урока.

Деятельность учителя: взаимные приветствия учителя и учащихся, фиксация учащихся, проверка готовности учащихся к уроку. Организация внимания и включение учащихся в деловой ритм работы.

организация внимания и включение в деловой ритм работы.

2. Подготовка к основному этапу занятия.

Деятельность учителя: сегодня мы приступим к изучению нового раздела "Квантовой физики" - "Элементарные частицы". В этой главе речь пойдет о первичных, неразложимых далее частицах, из которых построена вся материя, об элементарных частицах.

Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физика элементарных частиц и ядерная физика являются близкими, но самостоятельными разделами физики, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования.

Главная задача физики элементарных частиц - это исследование природы, свойств и взаимных превращений элементарных частиц.

Она будет являться и нашей главной задачей при изучении физики элементарных частиц.

3. Усвоение новых знаний и способов действий.

Деятельность учителя: Тема урока: "Этапы развития физики элементарных частиц". На уроке мы рассмотрим следующие вопросы:

  • История развития представлений о том, что мир состоит из элементарных частиц
  • Что такое элементарные частицы?
  • Каким способом можно получить обособленную элементарную частицу и возможно ли это?
  • Типология частиц.

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. На сегодняшний день выделяют три этапа развития физики элементарных частиц.

Откроем учебник. Ознакомимся с названиями этапов и временными рамками.

Прогнозируемая деятельность ученика:

Этап 1. От электрона до позитрона: 1897 - 1932 гг.

Этап 2. От позитрона до кварков: 1932 - 1964 гг.

Этап 3. От гипотезы о кварках (1964 г.) до наши дней.

Деятельность учителя:

Этап 1.

Элементарный, т.е. простейший, неделимый далее, так представлял себе атом известный древнегреческий ученый Демокрит. Напомню, что слово "атом" в переводе означает "неделимый". Впервые мысль о существовании мельчайших, невидимых частиц, из которых состоят все окружающие предметы, была высказана Демокритом за 400 лет до нашей эры. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. И в конце этого века было открыто сложное строение атома. В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение.

Вспомним ребята: какие частицы входят в состав атома и коротко охарактеризуем их?

Прогнозируемая деятельность ученика:

Деятельность учителя: ребята, а может быть, кто-то помнит из вас: кем и в какие годы были открыты электрон, протон и нейтрон?

Прогнозируемая деятельность ученика:

Электрон. В 1898 г. Дж. Томсон доказал реальность существования электронов. В 1909 г. Р. Милликен впервые измерил заряд электрона.

Протон. В 1919 г. Э. Резерфорд при бомбардировке азота - частицами обнаружил частицу, заряд которой равен заряду электрона, а масса в 1836 раз больше массы электрона. Назвали частицу протон.

Нейтрон. Резерфорд так же высказал предположение о существовании частицы, не имеющей заряда, масса которой равна массе протона.

В 1932 г. Д. Чэдвик открыл частицу, о которой предполагал Резерфорд, и назвал её нейтроном.

Деятельность учителя: после открытия протона и нейтрона стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д. Д. Иваненко и В. Гейзенберг).

В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие -иона и было выполнено измерение элементарного заряда. Конец XIX века - помимо открытия электрона, ознаменовался открытием явления радиоактивности (А. Беккерель, 1896 г.). В 1905 году в физике возникло представление о квантах электромагнитного поля - фотонах (А. Эйнштейн).

Вспомним: что называется фотоном?

Прогнозируемая деятельность ученика: Фотон (или квант электромагнитного излучения) - элементарная световая частица, электрически нейтральная, лишенная массы покоя, но обладающая энергией и импульсом.

Деятельность учителя: открытые частицы считали неделимыми и неизменными первоначальными сущностями, основными кирпичиками мироздания. Однако такое мнение просуществовало не долго.

Этап 2.

В 30-е годы были обнаружены и исследованы взаимные превращения протонов и нейтронов, и стало ясно, что эти частицы также не являются неизменными элементарными "кирпичиками" природы.

В настоящее время известно около 400 субъядерных частиц (частицы из которых состоят атомы, которые принято называть элементарными). Подавляющее большинство этих частиц являются нестабильными, (элементарные частицы превращаются друг в друга).

Исключение составляют лишь фотон, электрон, протон и нейтрино.

Фотон, электрон, протон и нейтрино являются стабильными частицами (частицы, которые могут существовать в свободном состоянии неограниченное время), но каждая из них при взаимодействии с другими частицами может превращаться в другие частицы.

Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы и это главный факт их существования.

Я упомянула об ещё одной частице - нейтрино. Каковы основные характеристики этой частицы? Кем и когда она была открыта?

Прогнозируемая деятельность ученика: Нейтрино - частица, лишенная электрического заряда и масса покоя его равна 0. О существовании этой частицы предсказал в 1931 г. В. Паули, а в 1955г., частица была экспериментально зарегистрирована. Проявляется в результате распада нейтрона:

Деятельность учителя: нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни.

Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин.

Другие частицы "живут" гораздо меньшее время.

Существует несколько десятков частиц со временем жизни, превосходящим 10 -17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными .

Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10 -22 -10 -23 с.

Способность к взаимным превращениям - это наиболее важное свойство всех элементарных частиц.

Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами.

Примером может служить аннигиляция (т. е. исчезновение ) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии.

Позитрон - (античастица электрона) положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. О её характеристиках более подробно поговорим на следующем уроке. Скажем только лишь, что существование позитрона было предсказано П. Дираком в 1928 году, а открыл его в 1932 г. в космических лучах К. Андерсон.

В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (-мезонами ). Среднее время жизни -мезона равно 2,2 * 10 -6 с.

Затем в 1947-1950 годах были открыты пионы (т. е. -мезоны). Среднее время жизни нейтрального -мезона - 0,87·10 -16 с.

В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций.

Современные ускорители необходимы для осуществления процесса рождения новых частиц и изучения свойств элементарных частиц. Исходные частицы разгоняются в ускорителе до высоких энергий "на встречных курсах" и в определенном месте сталкиваются друг с другом. Если энергия частиц велика, то в процессе столкновения рождается множество новых частиц, обычно нестабильных. Эти частицы, разлетаясь из точки столкновения, распадаются на более устойчивые частицы, которые и регистрируются детекторами. Для каждого такого акта столкновения (физики говорят: для каждого события) - а они регистрируются тысячами в секунду! -экспериментаторы в результате определяют кинематические переменные: значения импульсов и энергий "пойманных" частиц, а также их траектории (см. рис. в учебнике). Набрав много событий одного типа и изучив распределения этих кинематических величин, физики восстанавливают то, как протекало взаимодействие и к какому типу частиц можно отнести полученные частицы.

Этап 3.

Элементарные частицы объединяются в три группы: фотоны , лептоны и адроны (Приложение 2).

Ребята перечислите мне частицы, относящиеся к группе фотоны.

Прогнозируемая деятельность ученика: К группе фотонов относится единственная частица - фотон

Деятельность учителя: следующая группа состоит из легких частиц лептонов .

Прогнозируемая деятельность ученика : в эту группу входят два сорта нейтрино (электронное и мюонное), электрон и?-мезон

Деятельность учителя: к лептонам относятся еще ряд частиц, не указанных в таблице.

Третью большую группу составляют тяжелые частицы, называемые адронами . Эта группа делится на две подгруппы. Более легкие частицы составляют подгруппу мезонов .

Прогнозируемая деятельность ученика: наиболее легкие из них - положительно и отрицательно заряженные, а также нейтральные -мезоны. Пионы являются квантами ядерного поля.

Деятельность учителя: вторая подгруппа - барионы - включает более тяжелые частицы. Она является наиболее обширной.

Прогнозируемая деятельность ученика: самыми легкими из барионов являются нуклоны - протоны и нейтроны.

Деятельность учителя: за ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г.

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц.

В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы - адроны - построены из более фундаментальных частиц, названных кварками.

Со структурной точки зрения элементарные частицы, из которых состоят атомные ядра (нуклоны), и вообще все тяжелые частицы - адроны (барионы и мезоны) - состоят из еще более простых частиц, которые принято называть фундаментальными. В этой роли по-настоящему фундаментальных первичных элементов материи выступают кварки, электрический заряд которых равен +2/3 или -1/3 единичного положительного заряда протона.

Самые распространенные и легкие кварки называют верхним и нижним и обозначают, соответственно, u (от английского up) и d (down). Иногда их же называют протонным и нейтронным кварком по причине того, что протон состоит из комбинации uud, а нейтрон - udd. Верхний кварк имеет заряд +2/3; нижний - отрицательный заряд -1/3. Поскольку протон состоит из двух верхних и одного нижнего, а нейтрон - из одного верхнего и двух нижних кварков, вы можете самостоятельно убедиться, что суммарный заряд протона и нейтрона получается строго равным 1 и 0.

Две другие пары кварков входят в состав более экзотических частиц. Кварки из второй пары называют очарованным - c (от charmed) и странным - s (от strange).

Третью пару составляют истинный - t (от truth, или в англ. традиции top) и красивый - b (от beauty, или в англ. традиции bottom) кварки.

Практически все частицы, состоящие из различных комбинаций кварков, уже открыты экспериментально

С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин не наблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях.

Однако в декабре 2006 года по лентам научных информагентств и СМИ прошло странное сообщение об открытии "свободных топ-кварков".

4. Первичная проверка понимания.

Деятельность учителя: итак, ребята, мы рассмотрели с вами:

  • основные этапы развития физики элементарных частиц
  • выяснили, какую частицу называют элементарно
  • познакомились с типологией частиц.

На следующем уроке мы рассмотрим:

  • более подробную классификацию элементарных частиц
  • виды взаимодействий элементарных частиц
  • античастицы.

А сейчас я предлагаю вам выполнить тест, чтобы оживить в памяти основные моменты изученного нами материала (Приложение 3).

5. Подведение итогов занятия.

Деятельность учителя: Выставление оценок наиболее активным учащимся.

6. Домашнее задание

Деятельность учителя:

1. пр. 115, стр. 347

2. конспект параграфа по плану, записанному на уроке.
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Урок проводится в 11 классе и рассчитан на 2 академических часа и разбит на несколько блоков:

  • характеристики, описывающие состояние электрона в атоме;

Каждый из этих блоков может рассматриваться как в отдельности, так и в совокупности. Так блок «Этапы развития физики элементарных частиц» (Слайды 1-5) может быть рассмотрен в 9 классе при изучении соответствующей темы на ознакомительном уровне. Так же в 9 классе можно использовать блок «Методы регистрации элементарных частиц» (Слайды 29-31) при организации работы учащихся с учебником. Блок «Виды взаимодействия и их свойства» (Слайды 11-15) может быть использован на первых уроках 10 класса.

Перед изучением темы в 11 классе (за неделю) учащиеся получают задание подготовить сообщения по следующим направлениям:

  • этапы развития физики элементарных частиц;
  • виды взаимодействий и их свойства;
  • методы регистрации элементарных частиц.

Эти темы ими уже изучены ранее (9-10 класс), поэтому подготовка не занимает много времени и обычно не вызывает вопросов. На уроке учащиеся делают записи в рабочих тетрадях, опираясь на сообщения и слайды презентации. Блок «Характеристики, описывающие состояние электрона в атомах» рассматривается лекционно. По ходу лекции учащиеся записывают только названия характеристик.

Используемая литература :

  1. Элементарный учебник физики под ред. акад. Г.С. Ландсберга. Том 3. М.: «Наука», 1975
  2. Б.М. Яворский, А.А. Детлаф Курс физики. Том 3. М.: «Высшая школа», 1971
  3. Б.М. Яворский, А.А. Детлаф Физика: Для школьников старших классов и поступающих в вузы. М.: «Дрофа», 2000
  4. Ваш репетитор. Физика. Интерактивные лекции. Диск 1. ООО «Мультимедиа Технологии и Дистанционное обучение», 2003
  5. Л.Я. Боревский Курс физики 21 века. М.: «МедиаХауз», 2003

Тема урока: «Элементарные частицы и их свойства»

Цель урока:

  • Образовательные : получить учащихся, усвоивших следующие знания:

    • в микромире выделяются три уровня, различающихся характерными масштабами и энергиями (молекулярно-атомный, ядерный, уровень элементарных частиц);
    • в природе существует около 400 различных элементарных частиц (вместе с античастицами);
    • различают 4 типа фундаментальных взаимодействий (сильное, электромагнитное, слабое, гравитационное)
    • сильное взаимодействие свойственно тяжелым частицам; в электромагнитном непосредственно участвуют только электрически заряженные частицы; слабое взаимодействие характерно для всех частиц, кроме фотонов; гравитационное взаимодействие присуще всем телам Вселенной, проявляясь в виде сил всемирного тяготения;
    • фундаментальные взаимодействия различаются интенсивностями, радиусами действия, характерными временами, а так же свойственными им законами сохранения;
    • все элементарные частицы делятся на лептоны (фундаментальные) и адроны (составные);
    • адроны делятся на мезоны и барионы;
  • Развивающие : получить учащихся, научившихся следующим видам деятельности:
    • распознавать различные виды фундаментальных взаимодействий по их характеристикам;
    • осуществлять классификацию элементарных частиц;
    • записывать реакции превращений элементарных частиц с учетом законов сохранения;
    • описывать устройство и принцип действия приборов для регистрации элементарных частиц;
  • Воспитательная : получить учащихся, убедившихся в том, что:
    • все элементарные частицы превращаются друг в друга, и эти взаимные превращения – главный факт их существования;
    • выявление общего (обменного) механизма всех фундаментальных взаимодействий дает надежду на возможность построения единой теории, объясняющей картину мира;
    • составными частями материи являются: 6 сортов кварков и 6 лептонов, взаимодействие между которыми осуществляется за счет обмена соответствующими переносчиками взаимодействий (фотон, 8 глюонов, 3 промежуточных бозона и гравитон)

Тип урока: комбинированный.

Оборудование: медиапроектор, экран, компьютер, таблица «Методы регистрации частиц», таблица «Фундаментальные взаимодействия», раздаточный материал (Приложение 1 , Приложение 2 )

План урока:

I. Активизация знаний

Вступительное слово учителя о необходимости познания научной картины мира.

II. Приобретение знаний

1) Сообщение учащегося «Этапы развития физики элементарных частиц» (Слайды 1-5)
2) Лекция «Состояние электрона в атоме» (Слайды 6-10)
3) Сообщение «Виды взаимодействий» (Слайды 11-15)
4) Лекция «Характеристики элементарных частиц» (Слайды 16-28)
5) Сообщение учащихся «Методы регистрации элементарных частиц» (Слайды 29-31)

3) Объясните возможность представленных реакций с точки зрения законов сохранения заряда (реакции подбираются на усмотрение учителя). Используйте данные таблицы (Приложение 1 )

4) Пользуясь законом сохранения заряда, таблицей 2 (Приложение 1 ) и Приложением 2 , объясните кварковый состав некоторых адронов (на усмотрение учителя)

IV. Контроль знаний

Задание 1.

По предложенным свойствам определите, к какому типу относятся представленные взаимодействия.

Тип взаимодействия Интенсивность Характерное время, с
1/137 ~10-20
~1 ~ 10-23
~ 10-38 ?
~ 10-10 ~

Задание 2.

Переносчиками какого типа взаимодействия являются:

  • Глюоны
  • Промежуточные бозоны
  • Фотоны
  • Гравитоны

Задание 3.

Каков радиус действия каждого из взаимодействий?

V. Домашнее задание

§§ 115, 116, краткие итоги гл.14

\ Для учителя физики

При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Материалы прислал: Хасан Алиев МОУ СОШ с.Карасу, Черекского р-а,КБР С.Карасу

Основные исторические этапы развития физики элементарных частиц : первый - от электрона до позитрона, второй - от позитрона до кварков, третий - от гипотезы о кварках до наших дней. Понятие об элементарных частицах. Их взаимные превращения.

Цели:

  • " Обобщить и систематизировать материал данной темы.
  • " Развивать абстрактное, экологическое и научное мышления учащихся на основе представлений об элементарных частицах и их взаимодействиях.

Тип урока:, систематизация и обобщение.

Форма урока : лекция с элементами беседы и самостоятельной работы.

Метод обучения : диалогический, побуждающий.

ХОД УРОКА

  • I. Оргмомент.
  • План работы на урок:
  • 1) Исторический экскурс.
  • 2) Самостоятельная работа учащихся по выделению 3-х этапов развития взглядов на элементарные частицы
  • 3) Роль элементарных частиц в нашей жизни
  • II. Лекция.

Я вам сейчас задам вопрос. Сколько букв в русском алфавите? Правильно -33 буквы, но мы можем из них составлять слова, из слов - предложения, из предложений - рассказы. Т.е. Слово - это основа нашего общения, поэтому нашу встречу я начала с песни. Но я сейчас о другом, ведь мы с вами на уроке физики, а не литературы и именно физики элементарных частиц. Вы спросите, как это связано? А очень просто! Посмотрим на таблицу Менделеева. Сколько там элементов?

Да. Всего лишь 92. Как? Там больше? Верно, но все остальные - искусственно полученные, они в природе не встречаются. Кто бы мог сейчас их перечислить? А жаль. В одной из передач "Золотая лихорадка" игрок за эти знания получил 1 кг золота!

Итак - 92 атома. Из них тоже можно составить слова: молекулы, т.е. вещества! Как слова! Пример - 2 атома водорода, 1 атом кислорода! Что это? Вода. Но то, что все вещества состоят из атомов, утверждал еще Демокрит (400 лет до нашей эры). Он был большим путешественником, и его любимым изречением было: "Не существует ничего, кроме атомов и чистого пространства, все остальное - воззрение"

Итак: АТОМ - ДЕМОКРИТ (кирпичик мироздания).

Не прошло и 2000 лет, эстафету принимает Томсон.

ТОМСОН - ЭЛЕКТРОН . Начало XX века.

РЕЗЕРФОРД - ПРОТОН

ЧЕДВИК - НЕЙТРОН

История физики элементарных частиц условно отсчитывается от открытия электрона. Затем была выяснена структура атомного ядра - открыт протон (Э. Резерфорд, 1910 г.) и нейтрон (Дж. Чадвик, 1932 г.). Первый этап развития физики частиц условно завершился к середине 1930-х гг. К этому времени список элементарных частиц был невелик: три частицы - электрон e-, протон p и нейтрон n - входят в состав всех атомов; фотон g (квант электромагнитного поля) участвует во

взаимодействии заряженных частиц и процессах излучения и поглощения света. Важнейшим теоретическим открытием стало предсказание в 1929 г. П. Дираком существования античастиц (частиц, имеющих ту же массу и спин, но противоположные значения зарядов всех типов; см. об этом ниже). В 1932 г. была открыта первая античастица - позитрон е+. Наконец, изучая свойства b-распада ядер, В. Паули предсказал в 1930 г. существование еще одной частицы - нейтрино n. Аргументы Паули были настолько убедительными, что, хотя регистрация нейтрино реально оказалась возможной только в 1956 г., в существовании этой частицы никто не сомневался сразу после того, как Паули высказал свою гипотезу.

У вас на столах есть таблица элементарных частиц. Давайте найдем эти частицы и охарактеризуем их.

1928 год - Дирак и Андерсон открывают позитрон - античастицу электрона. А тут еще великий Эйнштейн решил помочь и предлагает "свой" фотон.

1931 год - Паули открывает нейтрино и антинейтрино. К 1935 году сформировалась более или менее стройная система. Наступило затишье в открытии элементарных частиц. Но не тут то было!

1935 год - Юкава открывает первый мезон.

" … думал, что достиг дна…, но снизу постучали…" С. Лемм

Второй этап развития физики частиц начался после Второй мировой войны с открытия в 1947 г. пи-мезона p в космических лучах. Начиная с этого года была открыта не одна сотня элементарных частиц.

В течение примерно пятнадцати лет (до начала 1960-х гг.), благодаря прогрессу в создании ускорителей и приборов для регистрации частиц, было открыто несколько сотен новых элементарных частиц, имеющих массы в диапазоне от 140 МэВ до 2 ГэВ.

Все эти частицы были нестабильными, т.е. распадались на частицы с меньшими массами, в конечном счете превращаясь в стабильные протон, электрон, фотон и нейтрино (и их античастицы). Все они казались в равной степени элементарными, так как в разных экспериментах можно было порождать любые из открытых частиц в

процессе соударения других частиц. Перед физиками-теоретиками встала труднейшая задача упорядочить весь обнаруженный "зоопарк" частиц и попытаться свести число фундаментальных частиц к минимуму, доказав, что другие частицы состоят из фундаментальных частиц.

Третий этап развития физики частиц начался в 1962 г., когда М. Гелл-Манн и независимо Дж. Цвейг предложили модель строения сильновзаимодействующих частиц из фундаментальных частиц - кварков. Эта модель к настоящему времени превратилась в стройную теорию всех известных типов взаимодействий частиц.

Можно считать, что третий этап завершился в 1995 г. открытием последнего из ожидавшихся, шестого кварка. В настоящее время не известно ни одного эксперимента, который бы противоречил существующей теории элементарных частиц, получившей название стандартной модели, и не находил бы количественного объяснения в рамках этой теории.

Обратимся к таблице. Таблица проецируется на экран проектором

Назовите 4 основные класса частиц:

  • 1. Фотоны
  • 2. Лептоны
  • 3. Мезоны
  • 4. Барионы

Что такое элементарная частица?(Элементарные частицы -это первичные, неразложимые далее частицы, из которых построена вся материя)

Теперь перейдем к следующей части урока. Вы используя учебник и опорный конспект, четко разграничьте 3 этапа развития теории элементарных частиц. Смотрите Ваши записи и учебник.

У доски работает Ася.

III. Экопауза.

Зачем нам нужны элементарные частицы?

А) Обратимся к опорному конспекту. Назовите 4 типа взаимодействий, которые существуют между частицами.(Гравитационное (ГВ), присущее всем без исключения частицам (даже тем, у которых масса равна нулю, поскольку, вообще говоря, тяготеет энергия, а не масса!). Сильное (СВ), объединяющее кварки в адроны - сильновзаимодействующие частицы, которые делятся на две группы: барионы - частицы с полуцелым спином, составленные из трех кварков (B ~ qqq), и мезоны - частицы с целым спином, составленные из кварка и нтикварка(M ~ `qq).Электромагнитное(ЭМВ),ответственное за все процессы с участием фотонов (структура атомов, излучение и поглощение света атомами, атомная структура и свойства вещества и т. п., вплоть до таких макроскопических проявлений, как сила трения). Слабое (СлВ), проявляющееся в процессах с участием нейтрино и в процессах распада некоторых адронов.)

Самая красивая формула в физике!!!

Е = mc2

Масса есть энергия! Что получается? Можно разогнать фотон и получить вещество!

Можно из энергии получить материю! Покажите это - приложите усилие.

(Рассказать один из интересных случаев из жизни Эйнштейна).

Б) Мы с вами живем в таком месте, где находится 1 нейтринный телескоп, из 2-х существующих на Земном шаре. Нейтрино - частица, которая не вступает во взаимодействия или вступает очень слабо с другими частицами. Она появилась в момент рождения Вселенной и носит много информации. Их ловят телескопами. 1 с.к. = 5 нейтрино.

В) Существует такой прибор - позитронный томограф. Человек вдыхает или вводят в кровь радиоактивный элемент, который излучает позитроны, они вступают в реакцию с электронами организма. Аннигилируют, излучают гамма-лучи, которые улавливаются детекторами.

Скажите, используя учебник что такое аннигиляция?

Г) А сейчас об опасностях, которые таят в себе элементарные частицы. Очень быстрые электроны или гамма - кванты (которые появляются при аннигиляции) могут образовывать в организме до 5 млрд. ионов. Эти заряженные ионы плохо действуют на нашу нервную систему. Если бы мы могли "послушать" нашу нервную системы, мы бы услышали точно такой же треск, который слышится, когда в радиоприемник приходят помехи. Но в малых, разумных дозах, воздействие элементарных частиц - полезно.

Д) Посмотрим на 2-й пункт в опорном конспекте. Этот пункт об античастицах. Есть вещество - есть антивещество. Вот бы найти способ их соединить! Мы могли бы тогда уничтожить любую грязь с Земли да еще получить чистейшую энергию в виде гамма-квантов. Вот вам еще одна область применения своих знаний. Белое пятно науки - дерзайте!

IV. Итог урока.

Используемая литература: Физика11 Мякишев, Буховцев - Дрофа., СД- диск открытая физика, Физика в картинках., Курс истории физики

Урок физики на тему: Этапы развития физики элементарных частиц. Физика элементарных частиц.

Понравилось? Отблагодарите, пожалуйста, нас! Для Вас это бесплатно, а нам - большая помощь! Добавьте наш сайт в свою социальную сеть: