Волна фарадея. Объяснение эффекта Фарадея (Э). Продольный магнитооптический эффект Фарадея

Через оптически неактивное вещество, находящееся в магнитном поле , наблюдается вращение плоскости поляризации света. Теоретически, эффект Фарадея может проявляться и в вакууме в магнитных полях порядка 10 11 -10 12 Гс .

Феноменологическое объяснение

Проходящее через изотропную среду линейно поляризованное излучение всегда может быть представлено как суперпозиция двух право- и левополяризованных волн с противоположным направлением вращения. Во внешнем магнитном поле показатели преломления для циркулярно право- и левополяризованного света становятся различными (n_+ и n_-). Вследствие этого, при прохождении через среду (вдоль силовых линий магнитного поля) линейно поляризованного излучения его циркулярно лево- и правополяризованные составляющие распространяются с разными фазовыми скоростями , приобретая разность хода, линейно зависящую от оптической длины пути. В результате плоскость поляризации линейно поляризованного монохроматического света с длиной волны \lambda, прошедшего в среде путь l, поворачивается на угол

\Theta = \frac{\pi l(n_+ - n_-)}{\lambda}.

В области не очень сильных магнитных полей разность n_+ - n_- линейно зависит от напряжённости магнитного поля и в общем виде угол фарадеевского вращения описывается соотношением

\ \Theta = \nu Hl,

Элементарное объяснение

Эффект Фарадея тесно связан с эффектом Зеемана , заключающимся в расщеплении уровней энергии атомов в магнитном поле. При этом переходы между расщеплёнными уровнями происходят с испусканием фотонов правой и левой поляризации, что приводит к различным показателям преломления и коэффициентам поглощения для волн различной поляризации. Грубо говоря, различие скоростей различно поляризованных волн обусловлено различием длин волн поглощаемого и переизлучаемого фотонов.

Строгое описание эффекта Фарадея проводится в рамках квантовой механики.

Применение эффекта

Используется в лазерных гироскопах и другой лазерной измерительной технике и в системах связи. Кроме того, эффект применяется при создании ферритовых СВЧ-устройств. В частности на основе эффекта Фарадея строятся СВЧ-циркуляторы на круглом волноводе.

История

Данный эффект был обнаружен М. Фарадеем в 1845 году .

Первоначальное объяснение эффекта Фарадея дал Д. Максвелл в своей работе «Избранные сочинения по теории электромагнитного поля», где он рассматривает вращательную природу магнетизма . Опираясь в том числе на работы Кельвина , который подчеркивал, что причиной магнитного действия на свет должно быть реальное(а не воображаемое) вращение в магнитном поле, Максвелл рассматривает намагниченную среду как совокупность «молекулярных магнитных вихрей». Теория, считающая электрические токи линейными, а магнитные силы вращательными явлениями, согласуется в этом смысле с теориями Ампера и Вебера . Исследование, проведённое Д. К. Максвеллом, приводит к заключению, что единственное действие, которое вращение вихрей оказывает на свет, состоит в том, что плоскость поляризации начинает вращаться в том же направлении, что и вихри, на угол, пропорциональный:

  • толщине вещества,
  • составляющей магнитной силы, параллельной лучу,
  • показателю преломления луча,
  • обратно пропорциональный квадрату длины волны в воздухе,
  • среднему радиусу магнитных вихрей,
  • ёмкости магнитной индукции (магнитной проницаемости).

Все положения «теории молекулярных вихрей» Д. Максвелл доказывает математически строго, подразумевая, что все явления природы в глубинной сути своей аналогичны и действуют похожим образом.

Многие положения данной работы были впоследствии забыты или не поняты (например, Герцем), однако известные на сегодняшний день уравнения для электромагнитного поля выведены были Д. Максвеллом из логических посылок указанной теории.

Австрийский физик-теоретик Л. Больцман в примечаниях к работе Д. Максвелла отзывался следующим образом:

Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили… Результаты переведенного здесь цикла работ, следовательно, должны быть причислены к важнейшим достижениям физической теории"

См. также

  • Магнитооптические эффекты

Напишите отзыв о статье "Эффект Фарадея"

Примечания

Источник

  • . Физическая энциклопедия. т.5. стр. 275

Отрывок, характеризующий Эффект Фарадея

Князь Андрей не мог удерживаться более и заплакал нежными, любовными слезами над людьми, над собой и над их и своими заблуждениями.
«Сострадание, любовь к братьям, к любящим, любовь к ненавидящим нас, любовь к врагам – да, та любовь, которую проповедовал бог на земле, которой меня учила княжна Марья и которой я не понимал; вот отчего мне жалко было жизни, вот оно то, что еще оставалось мне, ежели бы я был жив. Но теперь уже поздно. Я знаю это!»

Страшный вид поля сражения, покрытого трупами и ранеными, в соединении с тяжестью головы и с известиями об убитых и раненых двадцати знакомых генералах и с сознанием бессильности своей прежде сильной руки произвели неожиданное впечатление на Наполеона, который обыкновенно любил рассматривать убитых и раненых, испытывая тем свою душевную силу (как он думал). В этот день ужасный вид поля сражения победил ту душевную силу, в которой он полагал свою заслугу и величие. Он поспешно уехал с поля сражения и возвратился к Шевардинскому кургану. Желтый, опухлый, тяжелый, с мутными глазами, красным носом и охриплым голосом, он сидел на складном стуле, невольно прислушиваясь к звукам пальбы и не поднимая глаз. Он с болезненной тоской ожидал конца того дела, которого он считал себя причиной, но которого он не мог остановить. Личное человеческое чувство на короткое мгновение взяло верх над тем искусственным призраком жизни, которому он служил так долго. Он на себя переносил те страдания и ту смерть, которые он видел на поле сражения. Тяжесть головы и груди напоминала ему о возможности и для себя страданий и смерти. Он в эту минуту не хотел для себя ни Москвы, ни победы, ни славы. (Какой нужно было ему еще славы?) Одно, чего он желал теперь, – отдыха, спокойствия и свободы. Но когда он был на Семеновской высоте, начальник артиллерии предложил ему выставить несколько батарей на эти высоты, для того чтобы усилить огонь по столпившимся перед Князьковым русским войскам. Наполеон согласился и приказал привезти ему известие о том, какое действие произведут эти батареи.
Адъютант приехал сказать, что по приказанию императора двести орудий направлены на русских, но что русские все так же стоят.
– Наш огонь рядами вырывает их, а они стоят, – сказал адъютант.
– Ils en veulent encore!.. [Им еще хочется!..] – сказал Наполеон охриплым голосом.
– Sire? [Государь?] – повторил не расслушавший адъютант.
– Ils en veulent encore, – нахмурившись, прохрипел Наполеон осиплым голосом, – donnez leur en. [Еще хочется, ну и задайте им.]
И без его приказания делалось то, чего он хотел, и он распорядился только потому, что думал, что от него ждали приказания. И он опять перенесся в свой прежний искусственный мир призраков какого то величия, и опять (как та лошадь, ходящая на покатом колесе привода, воображает себе, что она что то делает для себя) он покорно стал исполнять ту жестокую, печальную и тяжелую, нечеловеческую роль, которая ему была предназначена.
И не на один только этот час и день были помрачены ум и совесть этого человека, тяжеле всех других участников этого дела носившего на себе всю тяжесть совершавшегося; но и никогда, до конца жизни, не мог понимать он ни добра, ни красоты, ни истины, ни значения своих поступков, которые были слишком противоположны добру и правде, слишком далеки от всего человеческого, для того чтобы он мог понимать их значение. Он не мог отречься от своих поступков, восхваляемых половиной света, и потому должен был отречься от правды и добра и всего человеческого.
Не в один только этот день, объезжая поле сражения, уложенное мертвыми и изувеченными людьми (как он думал, по его воле), он, глядя на этих людей, считал, сколько приходится русских на одного француза, и, обманывая себя, находил причины радоваться, что на одного француза приходилось пять русских. Не в один только этот день он писал в письме в Париж, что le champ de bataille a ete superbe [поле сражения было великолепно], потому что на нем было пятьдесят тысяч трупов; но и на острове Св. Елены, в тиши уединения, где он говорил, что он намерен был посвятить свои досуги изложению великих дел, которые он сделал, он писал:
«La guerre de Russie eut du etre la plus populaire des temps modernes: c"etait celle du bon sens et des vrais interets, celle du repos et de la securite de tous; elle etait purement pacifique et conservatrice.
C"etait pour la grande cause, la fin des hasards elle commencement de la securite. Un nouvel horizon, de nouveaux travaux allaient se derouler, tout plein du bien etre et de la prosperite de tous. Le systeme europeen se trouvait fonde; il n"etait plus question que de l"organiser.
Satisfait sur ces grands points et tranquille partout, j"aurais eu aussi mon congres et ma sainte alliance. Ce sont des idees qu"on m"a volees. Dans cette reunion de grands souverains, nous eussions traites de nos interets en famille et compte de clerc a maitre avec les peuples.
L"Europe n"eut bientot fait de la sorte veritablement qu"un meme peuple, et chacun, en voyageant partout, se fut trouve toujours dans la patrie commune. Il eut demande toutes les rivieres navigables pour tous, la communaute des mers, et que les grandes armees permanentes fussent reduites desormais a la seule garde des souverains.

Линейно поляризованного света. распространяющегося в в-ве вдоль постоянного магн. поля, в к-ром находится в-во.

Под влиянием магн. поля заряженные частицы в-ва приобретают вращат. движение в плоскости, перпендикулярной направлению поля. У в-ва появляется наведенный магн. момент. Поскольку электрич. и магн. индукции в в-ве зависят от наличия магн. момента и магн. поляризации среды под влиянием поля, то эта зависимость проявляется в том, что у световой монохроматич. волны, распространяющейся в направлении поля и поляризованной по кругу, возникает сдвиг фазы, причем знак сдвига зависит от направления круговой поляризации . В результате для любой волны, представляющей собой суперпозицию двух компонент - волн, поляризованных по кругу в противоположных направлениях,- меняется соотношение фаз компонент. В частности, линейно поляризованный свет, представляющий собой линейную комбинацию с равными весами лево- и правополяризованных по кругу волн, переходит вновь в линейно поляризованный, но с повернутой (на угол a) относительно направления распространения волны плоскостью поляризации . Такое изменение фаз эквивалентно различию показателей преломления в-ва (или, что то же, скорости распространения световой волны) для лево- и правополяризованных волн.

В области не очень сильных магн. полей угол вращения a плоскости поляризации определяется ф-лой:

a = V(w,T)·l·B,

где V(w,T) -постоянная Верде, зависящая от св-в в-ва, частоты w монохроматич. излучения и т-рыT; l - оптич. длина пути, напр., длина кюветы, в к-рой находится в-во; В -магн. индукция постоянного магн. поля. Для р-ра концентрации с величину l надо заменить на сl. Постоянная Верде V M для моля в-ва определяет молярное вращение чистого в-ва: V M = VM/r (M - молярная масса, r - плотн. в-ва) или молярное вращение в-ва в р-ре: V M = V/c.

Знак угла вращения (X принимается положительным для вращения плоскости поляризации по часовой стрелке, если распространение света совпадает с направлением магн. поля и наблюдатель смотрит на источник света. Такой выбор знаков распространен в химии ; в физике обычно принят обратный выбор знаков. По численному значению постоянные Верде, как правило, очень малы: сотые доли угловых минут. Для ряда парамагн. в-в они составляют десятые доли минуты. Наиб. значения, достигающие десятков минут, постоянные Верде имеют для ферромагн. в-в.

При частоте D-линии натрия (w ~ 17000 см -1) для большинства в-в постоянные Верде отрицательны и лишь нек-рые парамагн. в-ва (напр., соли железа) вращают плоскость поляризации в положит, направлении. При обратном прохождении луча света его плоскость поляризации вращается в противоположную сторону по отношению к этому лучу, тогда как по отношению к направлению поля B - в том же направлении, что и при прямом прохождении. Это позволяет использовать многократное прохождение луча для накопления угла поворота a.

Зависимость угла поворота a от частоты наз. дисперсией магн. оптич. вращения: a= a(w ). Дисперсия сильно зависит от структуры энергетич. спектра молекулы , в частности от того, как проявляется Зеемана эффект у вырожденных в отсутствие магн. поля энергетич. уровней. Переходы между зеемановскими подуровнями, расщепленными в при-сут. поля, из-за Фарадея эффекта оказываются поляризованными, что в свою очередь сказывается на форме кривых дисперсии магн. оптич. вращения. С этими же причинами - поляризацией переходов - связан и магн. круговой дихроизм , определяемый разностью молярных коэф. поглощения лево-и правополяризованного по кругу света: D e (w ) = e Л (w ) - e П (w ).

В химии часто используют эмпирич. соотношения, связывающие постоянные Верде с хим. строением молекул , напр, в гомологич. рядах применяют аддитивность величин V M по структурным фрагментам

Вещества, помещенные во внешнее магнитное поле, становятся анизотропными. При распространении света вдоль направления магнитного поля анизотропия является циркулярной. Она проявляется во вращении азимута линейной поляризации на угол φ , зависящий от напряженности магнитного поля Н и расстояния l , которое свет проходит в магнитном поле,

где V - постоянная Вердé, характеризующая магнитооптические свойства вещества.

Эффект вращения азимута поляризации при распространении света вдоль направления магнитного поля называется эффектом Фарадея. Отметим здесь важное отличие естественного вращения азимута поляризации в оптически активных веществах и эффекта Фарадея. В первом случае направление вращения определяется исключительно направлением распространения света, например, по часовой стрелке. Поэтому если свет, прошедший оптически активное вещество, отразить в зеркале, то, вернувшись в исходную точку, он восстановит направление колебаний электрического вектора.

В случае эффекта Фарадея направление вращения азимута поляризации определяется вектором магнитной индукции независимо от того, куда распространяется свет: по полю или против поля. Если в этом случае отразить свет от зеркала и пустить его обратно, то угол поворота в исходном положении удвоится.

Эффект Фарадея позволяет наблюдать магнитные домéны в прозрачных ферромагнитных материалах. Для этой цели воспользуемся кристаллами феррита-граната (ортоалюмината гадолиния), который, с одной стороны, является диэлектриком, прозрачным в видимой области спектра, с другой стороны, обладает ярко выраженными ферромагнитными свойствами. Образец имеет вид тонкой пластины (0,5 х 5 х 5 мм), в которой магнитные домены образуют лабиринт областей с двумя противоположными направлениями спонтанной намагниченности. В целом образец не намагничен, так как объемы доменов, намагниченных «вверх» и «вниз» равны (рис. 5.15).

Поместим этот образец на предметный столик микроскопа и осветим его линейно поляризованным светом (рис. 8.71). После прохождения образца поляризация света уже не будет однородной, одинаковой во всех точках поперечного сечения пучка. Поляризация света, прошедшего одни домены, повернется на какой-то небольшой угол в одном направлении, а поляризация света, прошедшего другие домены – на такой же угол в другом направлении. Если теперь перед окуляром микроскопа поместить анализатор, то, вращая его, можно одни домены сделать темными, а другие – светлыми (рис. 8.72а). Повернув анализатор еще дальше, можно, наоборот, первые домены сделать светлыми, а другие – темными (рис. 8.72б).



а б
в г

Рис. 8.72. Магнитные домены на экране монитора.

Если поместить образец в продольное магнитное поле (для этого используется небольшая катушка с током), то произойдет намагничение феррита-граната, при этом одни домены уменьшатся в размерах, а другие – увеличатся (рис. 8.72в). В этом частично намагниченном состоянии особенно наглядно продемонстрировать затемнение одних доменов и просветление других при повороте анализатора). При дальнейшем увеличении магнитного поля можно добиться полной намагниченности образца (рис. 8.72г). Выключение магнитного поля возвращает образец в исходное, ненамагниченное состояние. Остаточная намагниченность у этого мягкого ферромагнетика отсутствует.

С помощью импульсного магнитного поля можно попытаться перейти от полосовых к цилиндрическим магнитным доменам, которые имеют вид точек при наблюдении между скрещенными поляризаторами. Именно эти домены представляют большой интерес для создания электронных систем обработки информации.

Даже в прекрасно взаимной системе фазовый сдвиг Саньяка не только точный эффект необратимости. В частности благодаря магнитно оптическому эффекту Фарадея продольное магнитное поле В изменяет фазу циркулярно поляризованной волны, суммарно определяемой коэффициентом Верде V среды. Знак этого фазового сдвига зависит от левой или правой руки характера круговой поляризации, а также от относительного направления поля и вектора распространения света. Хорошо известно, что этот фазовый сдвиг может проявить себя как изменение в ориентации линейно поляризованного света, вытекающей из противоположного сдвига фаз сораспространяющегося лево- и праворучных циркулярно-поляризованных компонентов: , где L – длина среды. Также она может определяться как разность фаз в кольцевом волоконном интерферометре, в котором идентичные циркулярно поляризованные волны противонаправлены вокруг катушки (Рисунок. 7.1). Как показано в приложении 1, эта разность фаз равна двойному углу поворота Фарадея :

(7.1)

Сначала кажется, что общий эффект Фарадея по всему контуру пропорционален линейному интегралу от В по этому контуру. Для замкнутого контура результат должен быть отличен от нуля согласно закону Ампера, только если этот контур включает проводящий электрический ток. Конфигурация тороидального замкнутого контура была использована для демонстрации электрического тока в волоконном датчике , но волоконно- оптический гироскоп не должны быть чувствительным к магнитным полям окружающей среды, из-за отсутствия пересекающихся электрических токов. Однако это действительно верно, только если состояние поляризации сохраняется вдоль волокна. Фазовый сдвиг Фарадея, накопленный вдоль вектора элементарной длины dz , является

(7.2)

ΔФ F =2 B·L
(a)
(b)


где – коэффициент, который зависит от состояния поляризации. Он равен нулю для линейной поляризации и ± 1 для круговых поляризаций. Он имеет промежуточные значения для эллиптических поляризаций. Общая разность фаз между обеими противонаправленными волнами представлена соотношением

(7.3)

которое может быть отличным от нуля, даже если линейный интеграл равен нулю, поскольку не постоянна. Это связано с изменением поляризации вдоль волокна, вытекающее из остаточного двулучепреломления . Конфигурации, использующие двулучепреломление, вызванное изгибом, повышают чувствительность к внешним магнитным полям, что продемонстрировано на магнитометре с кольцевым интерферометром .

Если предположить, что влияние магнитного поля земли B земли было проинтегрировано конструктивно вдоль всего волокна длиной L , максимальная взаимообратная разность фаз будет

(7.4)

Постоянная Верде V имеет зависимость от длины волны λ –2 равна 2 рад·м – 1·Т –1 на 0,85 мкм, а B земли обычно составляет 0,5G (или 5·10 –5 Тесла), будет достигать 0,2 рад на 1 км длины катушки. Экспериментально было отмечено , что существует фактор компенсации примерно 10 3 в гироскопе, использующем обычное волокно, который дает погрешность измерения, приблизительно эквивалентную скорости вращения земли (т.е. 15 град/ч).

Обратите внимание, что эффект Фарадея также приводится в научной и учебной литературе в зависимости от поля Н. Поскольку в диамагнитных материалах, подобных кремнезему, В и Н пропорциональны, и относительная магнитная проницаемость близка к единице, единица измерения постоянной Верде V достигается путем умножения его "B-значение" при ; то есть «H- значение» V это 2,5·10 –6 рад А –1 на длине волны от 0,85 мкм.

Использование сохраняющего поляризацию волокна очень полезно для уменьшения необратимости, вызываемой двулучепреломлением, также для уменьшения магнитной зависимости, и на практике остаточная фазовая ошибка Фарадея становится порядка 1 мрад для 1 G (10 –4 Тесла). Однако эффект не является полностью обнуляющим вне связи с остаточным вращением осей двулучепреломления практических волокон . Этот имеющийся опыт очень высоких напряжений, которые, как правило, дают геликоидальную фигуру для напряженных стержней, и вызванного напряжениями высокого двулучепреломления волокон, используется для сохранения поляризации с медленно меняющейся ориентацией их основных осей .

Когда поворачиваются основные оси в волокне с линейным двулучепреломлением, собственные моды поляризации не находятся в состоянии линейной поляризации. Это может наблюдаться на сфере Пуанкаре (см. приложение 2), определяющей "покой" в связи со ссылкой, вызывающей вращение основных осей на темп вращения t w (в рад/м). В этом сосотоянии покоя линейное двулучепреломление представлено стабильным экваториальным вектором , но есть дополнительный вектор кругового двулучепреломления , направленный дволь полярной оси, учитывающий изменение системы отсчета (Рисунок 7.2). Величина соотвествует t w , но он соответствует противоположному направлению вращения. Общее двулучепреломление получается просто как векторная сумма . Величина гораздо меньше, чем , в противном случае поляризации вообще не будет сохранена; таким образом, два стабильных ортогональных состояния поляризации, слегка эллиптической, соответствуют пересечению со сферой Пуанкаре. Возвращаясь назад к "лабораторной" схеме двух состояний, сохраняющих ту же эллиптическую постоянную, но их мелкие и крупные оси вращаются относительно основных осей двулучепреломляющего волокна. Поляризация "медленно смещается" при повороте осей двулучепреломления и становится немного эллиптической.

В кольцевом интерферометре, используя такие сохраняющие поляризацию волокна, можно считать, что магнитное поле имеет незначительную зависимость от состояния поляризации в двух противоположных направлениях. Тем не менее, она модифицирует фазы противонаправленных волн в зависимости от коэффициента α р , равного эллиптическому состоянию; то есть, соотношение Накопленная разность фаз Фарадея, поэтому

(7.5)

В результате для круглой катушки радиусом R это дает

(7.6)

где – угол вектора В с базовой осью. Эта формула эквивалентна "синхронной демодуляции" из степени изгиба t w (z ) как «частота» (2πR ) –1 из интегрального "времени" L .

Остаточная магнитная зависимость подходит, поэтому, от пространственных компонентов частоты t w (z), равных обратному периметру 2πR в пределах ширины полосы пропускания, равной обратной общей длине катушки. Если предположить, что t w (z) является случайной функцией с постоянной плотностью мощности, могут быть применены обычный результаты обнаружения белого шума, с применением усилителя.

Если приложению требуется очень низкая магнитная зависимость, это позволяет получить дальнейшее совершенствование одного-двух порядков, измерительную катушку экранируют материалом с высокой магнитной проницаемостью, таким, как µ–метал. Обратите внимание на то, что, в связи с λ –2 зависимостью эффекта Фарадея, использование больших длин волн (т.е. 1,3 или 1,55 мкм) снижает фазовую ошибку с коэффициентом 3-4, по сравнению с 0,85 мкм для аналогичных дефектов волокон.

Как мы уже видели, сохраняющие поляризацию волокна обеспечивают лучшее сокращение Фарадевской необратимости, чем обычные волокна. Вместе с тем было показано, что если расположить дополнительный деполяризатор между поляризатором и соединителем катушки в дополнение к деполяризатору катушки, необратимость Фарадея также значительно сокращается даже с катушкой из обычного волокна .

Нелинейный эффект Керра

Другой важный случай необратимого эффекта может возникнуть вследствие нелинейного оптического эффекта Керра . Взаимности действительно основываются на линейном уравнении переноса (см. раздел 3.1), но дисбаланс в уровнях мощности противонаправленных волн может производить небольшие несогласованные разности фаз, в связи с распространением нелинейных, вызванных высокой оптической плотностью мощности в очень маленьком кремниевом ядре волокна. Медленные вариации в разделении коэффициента мощности делителя, возбуждение измерительной катушки может поэтому привести непосредственно к смещению дрейфа. Экспериментально разница мощности в 1 мкВт (например, вытекающая из 10 –3 дисбаланса разделения источника в 1мкВт) дает несогласованность с разностью коэффициентов менее, чем 10 –15 ; но при интегрировании вдоль нескольких сотен метров волокна это производит разность фаз в несколько 10 –5 рад, что по крайней мере на два порядка выше предела теоретической чувствительности. Она может быть сокращена, простым уменьшением мощности в волокне, но это приведет к увеличению влияния относительного шума детектирования.

В результате ошибки, индуцируемой эффектом Керра, вызванным скоростью вращения, на самом деле в результе сложного процесса смешивания четырех волн, и не просто самозависимая интенсивность распространения постоянной каждой противонаправлленной волны. Это также зависит от интенсивности противоположных волн . В линейной среде вектор электрической поляризации P определяется как (см. приложение I)

, (7.7)

но когда волна имеет высокую плотность энергии (т.е. большое Е поле), появляется дополнительный член нелинейной зависимости третьего порядка восприимчивость и скаляр в квадрате |E | 2 электрического поля и P становится

(7.8)

Относительная диэлектрическая проницаемость меняется на

(7.9)

и фактический показатель преломления имеет дополнительный нелинейный член

. (7.10)

В кольцевом интерферометре, где два поля E 1 и E 2 распространяются в противоположных направлениях, два вектора поляризации P 1 и Р 2 должны быть рассмотрены в каждом направлении распространения. Бывшие взаимосвязи между векторами Р и Е применялись для одной волны, но теперь каждую противонаправленную волну нельзя считать независимой. Вектор общей поляризация Р 1 + P 2 относится к общему полю Е 1 + Е 2 и, следовательно,

Потенциальный источник несогласованности вытекает из члена , который представляет интенсивность постоянной волны, в результате интерференции между обоими противонаправленными полями Е 1 и Е 2 .

При условии непрерывных монохроматических волн с одинаковым состоянием линейной поляризации и одинаковой частотой ω и постоянными противоположного направления распространения β и –β, имеем

, , (7.12)

где z – пространственная продольная координата вдоль волокон катушки. После это дает

(7.1З)

Первые два условия этого отношения зависят от суммы квадратов полей (т.е. интенсивностей) двух волн и поэтому дают нелинейные коэффициенты изменения для Е 1 и Е 2 в каждом противоположном направлении. С другой стороны два последних члена индуцируют несогласованность, поскольку

(7.14)

и точно так же,

Влияние членов при пространственной частоте 3β или –3β дает среднюю величину в распространении, но два других члена β и –β соответствущих фаз дают постоянное изменение чувствительности при распространении волн. Каждый вектор поляризации является на самом деле

Это дает различные нелинейные изменения показателя преломления для каждого противоположного направления:

и разность несогласованного показателя преломления:

(7.18)

Исходя из единой интенсивности распределения в области ядра диаметром около 5 мкм, эта индуцируемая эффектом Керра разность может быть оценена значением в кремнии в зависимости от разности мощности ΔP (пропорциональной ) между обоими направлениями, как :

Эта разница очень мала, но для эффекта Саньяка при интегрировании по всей длине L волокна катушки дает значительный рост разности фаз . На длине волны от 0,633 мкм :

Этот анализ показывает, что результаты несогласованности эффекта Керра следуют исключительно из-за образования нелинейного показателя дифракционной решетки, из-за интерференции между двумя противонаправленными волнами внутри волокон, которую дает постоянная волна. Как установлено раннее в , если различие этой постоянной волны вымывается в некоторых процессах, несогласованность следует уменьшить. Этот важный момент объясняет, почему использование широкополосных источников с короткой длиной когеренции значительно снижает несогласованность Керра: постоянная волна сопоставима только на расстоянии, равном длине когерентности L c в середине волоконной катушки (Рисунок 7.3), и поэтому эффект несогласованной разности показателя преломления интегрирован только вдоль L c , а не вдоль всего волокна длиной L !

Отмена несогласованности Керра с широкополосным источником первоначально объяснили статистикой колебаний интенсивности света . Фактически это оригинальное объяснение рассматривает случай интенсивности модулированной волны, который дает нелинейные возмущения показателя преломления, зависящие от времени t и координаты z в волокне:

Важной особенностью этих уравнений, как мы уже видели, является эффект пересечения мощности одной волны дважды, ее самоэффект. Использование в прямоугольной модуляции интенсивности волны монохроматического источника впервые предложено для снижения несогласованности Керра в работе . В этом случае скрещенные эффекты присутствуют только тогда, когда обе противонаправленные интенсивности совпадают (Рисунок 7.4) (т.е. половину времени), в то время как самоэффект представлен все время. Таким образом, второй фактор эффекта пересечения уменьшает усредненное значение единства, которое эффективно отменяет несогласованность, так как осцилляции средней фазы становятся идентичными в обоих направлениях.

Такого рода компенсации не ограничиваются прямоугольными волнами, и это применяется, если среднее значение <I > модулируемой интенсивности равно его стандартному отклонению . Благодаря центральной предельной теореме, поляризация широкополосного источника имеет случайные интенсивности с экспоненциальной вероятностью распределения:

(7.21)

и это выполняет требование , которое обеспечивает отсутствие несогласованности, вызванной эффектом Керра.

Однако сходство в членах когеренции между нелинейным эффектом и других когерентно связанных линейных эффектов ограничено использованием широкополосных источников с непрерывным распространением света, что разрушает контраст стоячих волн, но гарантирует, что обе противонаправленные интенсивности света являются постоянными в волокне. Очень короткие импульсы также могут ограничивать эффект когерентного обратного отражения, обратного рассеяния и несогласованности поляризации, но для проблемы нелинейности каждого противонаправленного импульса будет испытываться главным образом самоэффект, который даст несогласованность с дисбалансом мощности. Кроме того для одной средней мощности нелинейность далее увеличится, поскольку это зависит от пика мощности, которые намного выше в случае возникновения пульсации.

Обратите внимание, что было бы интересно изучить эффект дополнительной фазовой модуляции, особенно в средней части петли, чтобы увидеть, если это также возможно, это означает, что уменьшить контрастность стоячих волн и установить связь несогласованного Керра, несмотря на источник высокой когерентности.

Arditty, д. х., ю. Bourbin, м. Papuchon и C. Puech, "Датчик тока с использованием самой современной волоконно-оптической интерферометрической техники," Proceedings of ИООК, документ WL3, 1981.

Бома, К., К. Petermann и е. Weidel, "Чувствительность волоконного гироскопа к окружающим магнитным полям" оптика письма, том 7, 1982, pp. 180-182 (MS SPIE 8, стр. 328-330).

Шиффнер, г., б. Nottbeck и г. Schroner, "Волоконно-оптический датчик вращения: анализ эффектов ограничения чувствительности и точности" Springer серии в оптический наук, Vol. 32, 1982 г., стр. 266-274.

Берг, р. а., г. С Лефевр и H. J. шоу, "Многомодовый волоконно-оптический гироскоп" Springer серии в оптический наук, Vol. 32, 1982 г., стр. 252-255.

Берг, р. а., г. С Лефевр и H. J. шоу, "Геометрическая волоконная конфигурация для изоляторов и магнитометров," Springer серии в оптический наук, Vol. 32, 1982, pp. 400-405.

Хотате, K. и K. Tabe, "Дрейф оптического волоконного гироскопа, причиненный эффектом Фарадея: влияние магнитного поля Земли" прикладной оптики, Vol. 25, 1986, pp. 1086-1092 (MS SPIE 8, стр. 331-337).

Марроне, я. м., C. а. Villaruel, н. д. Фриго и а. Dandridge, "Внутреннее вращение осей двулучепреломления в сохраняющих поляризацию волокнах" оптика письма, том 12, 1987, pp. 60-62.

Блейк, J., "Чувствительность к магнитному полю деполяризованного волоконно-оптического гироскопа" SPIE труды, том 1367, 1990, pp. 81-86.

Иезекииль, S., д. л. Дэвисом и р. в. Hellwartli, "Интенсивность зависящего несогласованного сдвига фаз в волоконно-оптическом гироскопе" Springer серии в оптический наук, Vol. 32, 1982, pp. 332-336 (MS SPIE 8, стр. 308-312).

Каплан, а. и. п. Meystre, "Большое повышение эффекта Саньяка в нелинейном кольцевом резонаторе и смежные эффекты" Springer серии в оптический наук, Vol. 32, 1982, pp. 375-385.

Берг, р. а., б. Culshaw, С. С. Катлер, H С Лефевр и H. J. шоу, "Источник статистик и эффект Керра в волоконно-оптических гироскопах" оптика письма, том 7, 1982, pp. 563-565 (MS SPIE 8, стр. 313-315).

Petermann, K., "Зависящий от интенсивности несогласованный сдвиг фаз в волоконно-оптических гироскопах для источников света с низким уровнем когерентности" оптика письма, том 7, 1982, pp. 623-625 (MS SPIE 8, стр. 322-323).

Берг, р. а., г. С Лефевр и H. J. шоу, "Компенсация оптического эффекта Керра в волоконно-оптических гироскопах," письма оптики. Индекс vol.7, 1982, pp. 282-284 (MS SPIE 8, pp. 316-318).